Article title:
ВЫБОР ОПТИМАЛЬНОЙ АРХИТЕКТУРЫ ХРАНЕНИЯ И ОБРАБОТКИ ДАННЫХ ИЗ ФИНАНСОВЫХ ОТЧЁТОВ WILDBERRIES: ROW-STORE И COLUMN-STORE
Authors:
Романовский И. О., Ткаченко А. В., Серпинский Р. Э.
Keywords: Wildberries; финансовые отчёты; PostgreSQL; DuckDB; row-store; column-store; аналитические запросы; производительность СУБД; бизнес-аналитика.
Páginas: 178-184
Abstract: <v:line from="470.35pt,3.05pt" id="Line_x0020_1765" o:allowincell="f" o:gfxdata="UEsDBBQABgAIAAAAIQC75UiUBQEAAB4CAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKSRvU7DMBSF
dyTewfKKEqcMCKEmHfgZgaE8wMW+SSwc27JvS/v23KTJgkoXFsu+P+c7Ol5vDoMTe0zZBl/LVVlJ
gV4HY31Xy4/tS3EvRSbwBlzwWMsjZrlprq/W22PELHjb51r2RPFBqax7HCCXIaLnThvSAMTP1KkI
+gs6VLdVdad08ISeCho1ZLN+whZ2jsTzgcsnJwldluLxNDiyagkxOquB2Knae/OLUsyEkjenmdzb
mG/YhlRnCWPnb8C898bRJGtQvEOiVxjYhtLOxs8AySiT4JuDystlVV4WPeM6tK3VaILeDZxIOSsu
ti/jidNGNZ3/J08yC1dNv9v8AAAA//8DAFBLAwQUAAYACAAAACEArTA/8cEAAAAyAQAACwAAAF9y
ZWxzLy5yZWxzhI/NCsIwEITvgu8Q9m7TehCRpr2I4FX0AdZk2wbbJGTj39ubi6AgeJtl2G9m6vYx
jeJGka13CqqiBEFOe2Ndr+B03C3WIDihMzh6RwqexNA281l9oBFTfuLBBhaZ4ljBkFLYSMl6oAm5
8IFcdjofJ0z5jL0MqC/Yk1yW5UrGTwY0X0yxNwri3lQgjs+Qk/+zfddZTVuvrxO59CNCmoj3vCwj
MfaUFOjRhrPHaN4Wv0VV5OYgm1p+LW1eAAAA//8DAFBLAwQUAAYACAAAACEAbK7YxSoCAACPBAAA
HwAAAGNsaXBib2FyZC9kcmF3aW5ncy9kcmF3aW5nMS54bWykVMGOmzAQvVfqP1jcEyAhhKAlqwqS
vaTdlbLt3WsMWDU2sglJVPXfOzaQZNM9tRxgbM+8efPGw8Pjqeaoo0ozKRLHn3oOooLInIkycb6/
bieRg3SLRY65FDRxzlQ7j+vPnx5wXCrcVIwgQBA6xolTtW0Tu64mFa2xnsqGCjgrpKpxC0tVurnC
R0CuuTvzvNCtMRPO+gqV4Rajg2L/AMUl+UnzFIsOa4DkJL7dGThy8v/IOBbdk2r2zYsyzMm37kUh
licOKCdwDRI57nAwuMHSvYsqrwCnQtXGXxYFOlmUs3lbDHpqEek3yXWXVM8f+JJq84E3JO4TgHGT
lJzEvjFZRZca876W5VjLjgmK/GW4uBR1629CdyC8RkKmFRYl3Ve4oa/nBmTwTQikBYUuMVaHywrH
GjKjt+NXmUMAPrTS3gbDGBWcNT8Myo04QTCPgAoCLcL5bBauBlqjTmE4m4cROFzUutSP40bp9onK
GhkjcThUZrFxt9NtT3V0scrILePctoELdEychReFPRstOcvNqfHTqnxLuUId5tA3+wyFv3NT8iBy
i1ZRnG8Gu8WM9zYQ5cLgQS3AZ7D6Yfi18labaBMFk2AWbiaBl2WTL9s0mIRbf7nI5lmaZv5vU4wf
xBXLcyoMu3Ew/eCvW18zoqSWRTslsnbh6jFCx+GE0fS962iKUQf3PbrtLZAdv5Y0VGFa2ve9v2Pu
3Sjas+HXYeb9dr3+AwAA//8DAFBLAwQUAAYACAAAACEA4VE3H88GAADmGwAAGgAAAGNsaXBib2Fy
ZC90aGVtZS90aGVtZTEueG1s7FnNb9xEFL8j8T+MfG+z381G3VTZzW4Dbdoo2Rb1OGvP2tOMPdbM
bNK9ofaIhIQoiAOVuHFAQKVW4lL+mkARFKn/Am9mbK8n65C0jaCC5pC1n3/zvt+br8tX7sUMHRAh
KU96Xv1izUMk8XlAk7Dn3RqPLqx6SCqcBJjxhPS8OZHelfX337uM13xG0wnHIhhHJCYIGCVyDfe8
SKl0bWVF+kDG8iJPSQLfplzEWMGrCFcCgQ9BQMxWGrVaZyXGNPHWgaPSjIYM/iVKaoLPxJ5mQ1CC
Y5B+czqlPjHYYL+uEXIuB0ygA8x6HvAM+OGY3FMeYlgq+NDzaubPW1m/vILXskFMnTC2NG5k/rJx
2YBgv2FkinBSCK2PWt1LmwV/A2BqGTccDgfDesHPALDvg6VWlzLP1mi13s95lkD2cZn3oNautVx8
iX9zSeduv99vdzNdLFMDso+tJfxqrdPaaDh4A7L49hK+1d8YDDoO3oAsvrOEH13qdlou3oAiRpP9
JbQO6GiUcS8gU862KuGrAF+tZfAFCrKhyC4tYsoTdVKuxfguFyMAaCDDiiZIzVMyxT7k5ADHE0Gx
FoDXCC59sSRfLpG0LCR9QVPV8z5MceKVIC+fff/y2RN0dP/p0f2fjh48OLr/o2XkjNrCSVge9eLb
z/589DH648k3Lx5+UY2XZfyvP3zyy8+fVwOhfBbmPf/y8W9PHz//6tPfv3tYAd8QeFKGj2lMJLpB
DtEuj8Ew4xVXczIRrzZiHGFaHrGRhBInWEup4D9UkYO+Mccsi46jR5+4HrwtoH1UAa/O7joK70Vi
pmiF5GtR7AC3OWd9Liq9cE3LKrl5PEvCauFiVsbtYnxQJXuAEye+w1kKfTNPS8fwQUQcNXcYThQO
SUIU0t/4PiEV1t2h1PHrNvUFl3yq0B2K+phWumRMJ042LQZt0RjiMq+yGeLt+Gb7NupzVmX1Jjlw
kVAVmFUoPybMceNVPFM4rmI5xjErO/w6VlGVkntz4ZdxQ6kg0iFhHA0DImXVmJsC7C0F/RqGjlUZ
9m02j12kUHS/iud1zHkZucn3BxGO0yrsHk2iMvYDuQ8pitEOV1Xwbe5WiH6HOODkxHDfpsQJ9+nd
4BYNHZUWCaK/zISOJbRqpwPHNPm7dswo9GObA+fXjqEBPv/6UUVmva2NeAPmpKpK2DrWfk/CHW+6
Ay4C+vb33E08S3YIpPnyxPOu5b5rud5/vuWeVM9nbbSL3gptV68b7KLYLJHjE1fIU8rYnpozcl2a
RbKEeSIYAVGPMztBUuyY0gges77u4EKBzRgkuPqIqmgvwikssOueZhLKjHUoUcolbOwMuZK3xsMi
XdltYVtvGGw/kFht88CSm5qc7wsKNma2Cc3mMxfU1AzOKqx5KWMKZr+OsLpW6szS6kY10+ocaYXJ
EMNl04BYeBMWIAiWLeDlDuzFtWjYmGBGAu13O/fmYTFROM8QyQgHJIuRtns5RnUTpDxXzEkA5E5F
jPQm7xSvlaR1Nds3kHaWIJXFtU4Ql0fvTaKUZ/AiSrpuj5UjS8rFyRJ02PO67UbbQz5Oe94U9rTw
GKcQdanXfJiFcBrkK2HT/tRiNlW+iGY3N8wtgjocU1i/Lxns9IFUSLWJZWRTw3zKUoAlWpLVv9EG
t56XATbTX0OL5iokw7+mBfjRDS2ZTomvysEuUbTv7GvWSvlMEbEXBYdowmZiF0P4daqCPQGVcDRh
OoJ+gXM07W3zyW3OWdGVT68MztIxSyOctVtdonklW7ip40IH81ZSD2yr1N0Y9+qmmJI/J1PKafw/
M0XPJ3BS0Ax0BHw4lBUY6XrteVyoiEMXSiPqjwQsHEzvgGyBs1j4DEkFJ8jmV5AD/WtrzvIwZQ0b
PrVLQyQozEcqEoTsQFsy2XcKs3o2d1mWLGNkMqqkrkyt2hNyQNhY98COnts9FEGqm26StQGDO55/
7ntWQZNQL3LK9eb0kGLutTXwT698bDGDUW4fNgua3P+FihWzqh1vhudzb9kQ/WGxzGrlVQHCSlNB
Nyv711ThFada27GWLG60c+UgissWA7FYEKVw3oP0P5j/qPCZvW3QE+qY70JvRXDRoJlB2kBWX7AL
D6QbpCVOYOFkiTaZNCvr2mzppL2WT9bnvNIt5B5zttbsLPF+RWcXizNXnFOL5+nszMOOry3tRFdD
ZI+XKJCm+UbGBKbq1mkbp2gS1nse3PxAoO/BE9wdeUBraFpD0+AJLoRgsWRvcXpe9pBT4LulFJhm
TmnmmFZOaeWUdk6BxVl2X5JTOtCp9BUHXLHpHw/ltxmwgstuP/Km6lzNrf8FAAD//wMAUEsDBBQA
BgAIAAAAIQCcZkZBuwAAACQBAAAqAAAAY2xpcGJvYXJkL2RyYXdpbmdzL19yZWxzL2RyYXdpbmcx
LnhtbC5yZWxzhI/NCsIwEITvgu8Q9m7SehCRJr2I0KvUBwjJNi02PyRR7Nsb6EVB8LIws+w3s037
sjN5YkyTdxxqWgFBp7yenOFw6y+7I5CUpdNy9g45LJigFdtNc8VZ5nKUxikkUigucRhzDifGkhrR
ykR9QFc2g49W5iKjYUGquzTI9lV1YPGTAeKLSTrNIXa6BtIvoST/Z/thmBSevXpYdPlHBMulFxag
jAYzB0pXZ501LV2BiYZ9/SbeAAAA//8DAFBLAQItABQABgAIAAAAIQC75UiUBQEAAB4CAAATAAAA
AAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAK0wP/HBAAAA
MgEAAAsAAAAAAAAAAAAAAAAANgEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGyu2MUqAgAA
jwQAAB8AAAAAAAAAAAAAAAAAIAIAAGNsaXBib2FyZC9kcmF3aW5ncy9kcmF3aW5nMS54bWxQSwEC
LQAUAAYACAAAACEA4VE3H88GAADmGwAAGgAAAAAAAAAAAAAAAACHBAAAY2xpcGJvYXJkL3RoZW1l
L3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEAnGZGQbsAAAAkAQAAKgAAAAAAAAAAAAAAAACOCwAA
Y2xpcGJvYXJkL2RyYXdpbmdzL19yZWxzL2RyYXdpbmcxLnhtbC5yZWxzUEsFBgAAAAAFAAUAZwEA
AJEMAAAAAA==
" strokeweight="1.41281mm" style="position:absolute; left:0; text-align:left; flip:y; z-index:251654656" to="991.9pt,3.05pt"> <w:wrap anchorx="margin"> </w:wrap></v:line><v:line from="470.35pt,3.05pt" id="_x0000_s1026" o:allowincell="f" o:gfxdata="UEsDBBQABgAIAAAAIQC75UiUBQEAAB4CAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKSRvU7DMBSF
dyTewfKKEqcMCKEmHfgZgaE8wMW+SSwc27JvS/v23KTJgkoXFsu+P+c7Ol5vDoMTe0zZBl/LVVlJ
gV4HY31Xy4/tS3EvRSbwBlzwWMsjZrlprq/W22PELHjb51r2RPFBqax7HCCXIaLnThvSAMTP1KkI
+gs6VLdVdad08ISeCho1ZLN+whZ2jsTzgcsnJwldluLxNDiyagkxOquB2Knae/OLUsyEkjenmdzb
mG/YhlRnCWPnb8C898bRJGtQvEOiVxjYhtLOxs8AySiT4JuDystlVV4WPeM6tK3VaILeDZxIOSsu
ti/jidNGNZ3/J08yC1dNv9v8AAAA//8DAFBLAwQUAAYACAAAACEArTA/8cEAAAAyAQAACwAAAF9y
ZWxzLy5yZWxzhI/NCsIwEITvgu8Q9m7TehCRpr2I4FX0AdZk2wbbJGTj39ubi6AgeJtl2G9m6vYx
jeJGka13CqqiBEFOe2Ndr+B03C3WIDihMzh6RwqexNA281l9oBFTfuLBBhaZ4ljBkFLYSMl6oAm5
8IFcdjofJ0z5jL0MqC/Yk1yW5UrGTwY0X0yxNwri3lQgjs+Qk/+zfddZTVuvrxO59CNCmoj3vCwj
MfaUFOjRhrPHaN4Wv0VV5OYgm1p+LW1eAAAA//8DAFBLAwQUAAYACAAAACEA3juHjysCAACPBAAA
HwAAAGNsaXBib2FyZC9kcmF3aW5ncy9kcmF3aW5nMS54bWykVMGOmzAQvVfqP1i+J0BCWIKWrCqS
7CXtrpRt715jwKqxkU1IVlX/vWMDSTbdU8sBxvbMmzdvPNw/nGqBOqYNVzLFwdTHiEmqci7LFH9/
2U5ijExLZE6EkizFb8zgh9XnT/ckKTVpKk4RIEiTkBRXbdsknmdoxWpipqphEs4KpWvSwlKXXq7J
EZBr4c18P/JqwiVeXaDWpCXooPk/QAlFf7I8I7IjBiAFTa53Bo6C/j8ySWT3qJt986wtc/qte9aI
5ykG5SSpQSLsDQeDGyy9m6jyAnAqdG39VVGgk0N5s2+HwU4tov0mvezS6ukDX1ptPvCGxH0CMK6S
0pPcNzar7DJr3tayHGvZcclQcBctzkVd+9vQHQhvkFRZRWTJ9hVp2MtbAzIENgTSgkLnGKfDeUUS
A5nR6/GryiGAHFrlboNljArBmx8W5UqcMJzHQAWBFtF8NouWA61RpyiazaMYHM5qnesnSaNN+8hU
jayRYgGVOWzS7UzbUx1dnDJqy4VwbRASHVO88OOoZ2OU4Lk9tX5Gl6+Z0KgjAvrmnqHwd25aHWTu
0CpG8s1gt4SL3gaiQlo8qAX4DFY/DL+W/nITb+JwEs6izST01+vJl20WTqJtcLdYz9dZtg5+22KC
MKl4njNp2Y2DGYR/3fqaU62MKtopVbUHV49TNg4njGbgX0ZTjjp479Fdb4Hs+HWkoQrb0r7v/R3z
bkbRnQ2/Djvv1+vVHwAAAP//AwBQSwMEFAAGAAgAAAAhAOFRNx/PBgAA5hsAABoAAABjbGlwYm9h
cmQvdGhlbWUvdGhlbWUxLnhtbOxZzW/cRBS/I/E/jHxvs9/NRt1U2c1uA23aKNkW9Thrz9rTjD3W
zGzSvaH2iISEKIgDlbhxQEClVuJS/ppAERSp/wJvZmyvJ+uQtI2gguaQtZ9/877fm6/LV+7FDB0Q
ISlPel79Ys1DJPF5QJOw590ajy6sekgqnASY8YT0vDmR3pX199+7jNd8RtMJxyIYRyQmCBglcg33
vEipdG1lRfpAxvIiT0kC36ZcxFjBqwhXAoEPQUDMVhq1WmclxjTx1oGj0oyGDP4lSmqCz8SeZkNQ
gmOQfnM6pT4x2GC/rhFyLgdMoAPMeh7wDPjhmNxTHmJYKvjQ82rmz1tZv7yC17JBTJ0wtjRuZP6y
cdmAYL9hZIpwUgitj1rdS5sFfwNgahk3HA4Hw3rBzwCw74OlVpcyz9Zotd7PeZZA9nGZ96DWrrVc
fIl/c0nnbr/fb3czXSxTA7KPrSX8aq3T2mg4eAOy+PYSvtXfGAw6Dt6ALL6zhB9d6nZaLt6AIkaT
/SW0DuholHEvIFPOtirhqwBfrWXwBQqyocguLWLKE3VSrsX4LhcjAGggw4omSM1TMsU+5OQAxxNB
sRaA1wgufbEkXy6RtCwkfUFT1fM+THHilSAvn33/8tkTdHT/6dH9n44ePDi6/6Nl5IzawklYHvXi
28/+fPQx+uPJNy8eflGNl2X8rz988svPn1cDoXwW5j3/8vFvTx8//+rT3797WAHfEHhSho9pTCS6
QQ7RLo/BMOMVV3MyEa82YhxhWh6xkYQSJ1hLqeA/VJGDvjHHLIuOo0efuB68LaB9VAGvzu46Cu9F
YqZoheRrUewAtzlnfS4qvXBNyyq5eTxLwmrhYlbG7WJ8UCV7gBMnvsNZCn0zT0vH8EFEHDV3GE4U
DklCFNLf+D4hFdbdodTx6zb1BZd8qtAdivqYVrpkTCdONi0GbdEY4jKvshni7fhm+zbqc1Zl9SY5
cJFQFZhVKD8mzHHjVTxTOK5iOcYxKzv8OlZRlZJ7c+GXcUOpINIhYRwNAyJl1ZibAuwtBf0aho5V
GfZtNo9dpFB0v4rndcx5GbnJ9wcRjtMq7B5NojL2A7kPKYrRDldV8G3uVoh+hzjg5MRw36bECffp
3eAWDR2VFgmiv8yEjiW0aqcDxzT5u3bMKPRjmwPn146hAT7/+lFFZr2tjXgD5qSqStg61n5Pwh1v
ugMuAvr299xNPEt2CKT58sTzruW+a7nef77lnlTPZ220i94KbVevG+yi2CyR4xNXyFPK2J6aM3Jd
mkWyhHkiGAFRjzM7QVLsmNIIHrO+7uBCgc0YJLj6iKpoL8IpLLDrnmYSyox1KFHKJWzsDLmSt8bD
Il3ZbWFbbxhsP5BYbfPAkpuanO8LCjZmtgnN5jMX1NQMziqseSljCma/jrC6VurM0upGNdPqHGmF
yRDDZdOAWHgTFiAIli3g5Q7sxbVo2JhgRgLtdzv35mExUTjPEMkIBySLkbZ7OUZ1E6Q8V8xJAORO
RYz0Ju8Ur5WkdTXbN5B2liCVxbVOEJdH702ilGfwIkq6bo+VI0vKxckSdNjzuu1G20M+TnveFPa0
8BinEHWp13yYhXAa5Cth0/7UYjZVvohmNzfMLYI6HFNYvy8Z7PSBVEi1iWVkU8N8ylKAJVqS1b/R
BreelwE2019Di+YqJMO/pgX40Q0tmU6Jr8rBLlG07+xr1kr5TBGxFwWHaMJmYhdD+HWqgj0BlXA0
YTqCfoFzNO1t88ltzlnRlU+vDM7SMUsjnLVbXaJ5JVu4qeNCB/NWUg9sq9TdGPfqppiSPydTymn8
PzNFzydwUtAMdAR8OJQVGOl67XlcqIhDF0oj6o8ELBxM74BsgbNY+AxJBSfI5leQA/1ra87yMGUN
Gz61S0MkKMxHKhKE7EBbMtl3CrN6NndZlixjZDKqpK5MrdoTckDYWPfAjp7bPRRBqptukrUBgzue
f+57VkGTUC9yyvXm9JBi7rU18E+vfGwxg1FuHzYLmtz/hYoVs6odb4bnc2/ZEP1hscxq5VUBwkpT
QTcr+9dU4RWnWtuxlixutHPlIIrLFgOxWBClcN6D9D+Y/6jwmb1t0BPqmO9Cb0Vw0aCZQdpAVl+w
Cw+kG6QlTmDhZIk2mTQr69ps6aS9lk/W57zSLeQec7bW7CzxfkVnF4szV5xTi+fp7MzDjq8t7URX
Q2SPlyiQpvlGxgSm6tZpG6doEtZ7Htz8QKDvwRPcHXlAa2haQ9PgCS6EYLFkb3F6XvaQU+C7pRSY
Zk5p5phWTmnllHZOgcVZdl+SUzrQqfQVB1yx6R8P5bcZsILLbj/ypupcza3/BQAA//8DAFBLAwQU
AAYACAAAACEAnGZGQbsAAAAkAQAAKgAAAGNsaXBib2FyZC9kcmF3aW5ncy9fcmVscy9kcmF3aW5n
MS54bWwucmVsc4SPzQrCMBCE74LvEPZu0noQkSa9iNCr1AcIyTYtNj8kUezbG+hFQfCyMLPsN7NN
+7IzeWJMk3ccaloBQae8npzhcOsvuyOQlKXTcvYOOSyYoBXbTXPFWeZylMYpJFIoLnEYcw4nxpIa
0cpEfUBXNoOPVuYio2FBqrs0yPZVdWDxkwHii0k6zSF2ugbSL6Ek/2f7YZgUnr16WHT5RwTLpRcW
oIwGMwdKV2edNS1dgYmGff0m3gAAAP//AwBQSwECLQAUAAYACAAAACEAu+VIlAUBAAAeAgAAEwAA
AAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBLAQItABQABgAIAAAAIQCtMD/xwQAA
ADIBAAALAAAAAAAAAAAAAAAAADYBAABfcmVscy8ucmVsc1BLAQItABQABgAIAAAAIQDeO4ePKwIA
AI8EAAAfAAAAAAAAAAAAAAAAACACAABjbGlwYm9hcmQvZHJhd2luZ3MvZHJhd2luZzEueG1sUEsB
Ai0AFAAGAAgAAAAhAOFRNx/PBgAA5hsAABoAAAAAAAAAAAAAAAAAiAQAAGNsaXBib2FyZC90aGVt
ZS90aGVtZTEueG1sUEsBAi0AFAAGAAgAAAAhAJxmRkG7AAAAJAEAACoAAAAAAAAAAAAAAAAAjwsA
AGNsaXBib2FyZC9kcmF3aW5ncy9fcmVscy9kcmF3aW5nMS54bWwucmVsc1BLBQYAAAAABQAFAGcB
AACSDAAAAAA=
" strokeweight="1.41281mm" style="position:absolute; left:0; text-align:left; flip:y; z-index:251665920" to="991.9pt,3.05pt"> <w:wrap anchorx="margin"> </w:wrap></v:line>В работе проводится сравнительный анализ производительности строчно-ориентированной СУБД PostgreSQL и колоночной системы DuckDB при хранении и обработке «широких» финансовых отчётов маркетплейса Wildberries. Исследование охватывает типовые аналитические запросы (агрегации, группировки, оконные функции) и включает замер времени выполнения, нагрузки на CPU и RAM, а также эффективности дискового хранения. На основе Python-скрипта реализован автоматизированный прогон идентичных SQL-запросов и мониторинг вычислительных ресурсов, что позволяет объективно оценить преимущества и ограничения строчно- и колоночно-ориентированных архитектур в задачах бизнес-аналитики. Полученные результаты показывают существенное преимущество DuckDB по скорости обработки и компактности хранения по сравнению с PostgreSQL при работе с табличными данными отчётности Wildberries.
Full text is not available
Download full text
Our expert team reviews the manuscript and prepares a useful report regarding what can be improved. It's fast and it's FREE.
We are also professionals in language editing. Try us and learn more about what our services by clicking here
Archive
- 2025 - Том 15, Выпуск 11
- 2025 - Том 15, Выпуск 10
- 2025 - Том 15, Выпуск 9
- 2025 - Том 15, Выпуск 8
- 2025 - Том 15, Выпуск 7
- 2025 - Том 15, Выпуск 6
- 2025 - Том 15, Выпуск 5
- 2025 - Том 15, Выпуск 4
- 2025 - Том 15, Выпуск 3
- 2025 - Том 15, Выпуск 2
-
Full archive