

УДК 621.771

АНАЛОГОВАЯ СИМУЛЯЦИЯ ЭЛЕКТРОТЕНЗОМЕТРИРОВАНИЯ ДИНАМИЧЕСКИХ НАГРУЗОК ЭЛЕКТРОПРИВОДА МЕХАНИЗМА ПЕРЕДВИЖЕНИЯ ТЕЛЕЖКИ КОЗЛОВОГО КРАНА

Андрей Анатольевич Мальцев

доцент кафедр ФН-7 и МТ-10 МГТУ имени Н.Э. Баумана e-mail: a.a.mal@bmstu.ru

Юрий Иванович Беляков

доцент кафедры ФН-7 МГТУ имени Н.Э. Баумана e-mail: belpmm@mail.ru

Ирина Александровна Тарасенко

старший преподаватель кафедры ФН-7 МГТУ имени Н.Э. Баумана e-mail: iri-tarasenko@yandex.ru

Аннотация

В этой статье рассмотрены ключевые этапы и перспективы предполага-емой научноисследовательской работы студентов (НИРС) на тему «Анало-говая симуляция электротензометрирования динамических нагрузок элек-тропривода механизма передвижения тележки козлового крана».

Ключевые слова: электропривод, тензометрия, металлургия, козловый кран.

SIMULATION OF A STRAIN-RESISTIVE METHOD FOR STUDYING DYNAMIC LOADS OF AN ELECTRIC DRIVE OF A GANTRY CRANE MOVEMENT MECHANISM

Andrey A. Maltsev

associate professor of BMSTU ΦH-7 and MT-10 departments e-mail: a.a.mal@bmstu.ru

Yuri I. Belyakov

associate professor of BMSTU ΦH-7 department e-mail: belpmm@mail.ru

Irina A. Tarasenko

senior lecturer of BMSTU ΦH-7 department e-mail: iri-tarasenko@yandex.ru

ABSTRACT

This article discusses the key stages and prospects of the proposed re-search work of students on the topic "Analog simulation of electrotensiometry of dynamic loads of the electric drive of the mechanism of movement of the gantry crane trolley".

Keywords: electric drive, strain gauge, metallurgy, gantry crane.

Актуальность исследования обусловлена высокой степенью важности анализа напряженно-деформированного состояния (НДС) деталей металлургических подъемно-транспортных машин.

Цель исследования — развитие у студентов профессиональной компетенции с формулировкой «Способность использовать современные методы моделирования, исследования и расчетов технологических комплексов в металлургическом производстве» по специальности «Проектирование технологических машин и комплексов».

Задача исследования — вовлечение студентов в различные формы НИРС.

Объект исследования — электропривод механизма передвижения тележки перегрузочного грейферного козлового крана, установленного на рудном дворе доменного цеха (рис. 1).

Рисунок 1. Кинематическая схема электропривода:

- 1 тормоз;
- 2 асинхронный электродвигатель;
- 3 муфта;
- 4 трехступенчатый редуктор;
- 5 трансмиссионный вал;
- 6 тензометрический полумост;
- 7 ходовое колесо

Предмет исследования – НДС валов электропривода при кручении.

Материалы исследования — осциллограммы моментов сил упругости, действующих в трансмиссионных валах электропривода (рис. 2).

Рисунок 2. Осциллограммы нагрузок [1]: $M_1 -$ упругий момент первого трансмиссионного вала; $M_2 -$ упругий момент второго трансмиссионного вала

Метод исследования — электротензометрический (рис. 3).

Рисунок 3. Схема тензометрического полумоста [2, 3]:

Е — источник постоянной ЭДС;

R — балластное сопротивление;

*R*₁ — рабочий тензорезистор;

*R*₂ — компенсационный тензорезистор;

*R*₃ — потенциометр;

I, I_1 , I_2 , I_3 , I_4 , I_5 — токи

Фольговые константановые одноосевые тензорезисторы общего назначения предназначены для измерения упругих деформаций в деталях машин и конструкций при статических и динамических нагрузках (табл. 1).

Таблица 1

Технические характеристики тензорезисторов

Вариант	Тип	Размеры,	Номинальная	Номинальное
		MM	база,	сопротивление,
			MM	Ом

1	2ФКП-1-50	5,5 × 6,6	1	50
2	2ФКП-3-100	5,7 × 8,5	3	100
3	2ФКП-3-400	5,7 × 9,8	3	400
4	2ФКП-5-100	4,7 × 10,0	5	100
5	2ФКП-5-200	5,0 × 11,0	5	200
6	2ФКП-5-350	5,2 × 10,7	5	350
7	2ФКП-5-400	5,0 × 11,0	5	400
8	2ФКП-5-700	5,8 × 10,7	5	700
9	2ФКП-10-100	3,7 × 15,0	10	100
10	2ФКП-10-120	4,0 × 15,0	10	120
11	2ФКП-10-200	7,7 × 22,0	10	200
12	2ФКП-10-400	5,4 × 15,0	10	400
13	2ФКП-15-200	4,4 × 20,0	15	200
14	2ФКП-15-400	5,8 × 20,0	15	400
15	2ФКП-20-200	4,7 × 25,0	20	200
16	2ФКП-20-400	4,7 × 25,0	20	400
17	2ФКП-30-120	5,2 × 37,0	30	120
18	2ФКП-60-120	3,0 × 65,0	60	120

Ток питания для всех тензорезисторов типа 2ФКП (см. табл. 1) — не более 25 мА, диапазон измеряемых деформаций не превышает ± 3000 мкм/м , диапазон рабочих температур находится в пределах –50 ... + 70 °С.

При кручении трансмиссионного вала максимальные деформации растяжения и сжатия возникают на его поверхности вдоль винтовых линий, расположенных под углом 45°, поэтому рабочий тензорезистор должен быть наклеен под углом 45° к оси вала.

Если в качестве рабочего тензорезистора студенты выберут константановый тензорезистор типа 2ФКП-1-50, номинальное электрическое сопротивление которого (сопротивление в недеформированном состоянии) равно 50 Ом, то в качестве компенсационного ими должен быть выбран тензорезистор обязательно того же типа (2ФКП-1-50).

Коэффициент тензочувствительности константана $S \approx 2$, а предельно допустимая относительная деформация тензорезистора типа 2ФКП-1-50 при его растяжении-сжатии составляет $\varepsilon = \pm 3000$ мкм/м , поэтому электрическое сопротивление рабочего тензорезистора типа 2ФКП-1-50 изменяется при деформации растяжения-сжатия на незначительную величину:

 $R_1 = 50 \pm \Delta R_1 = 50 \pm 50 S \varepsilon = 50 \pm 0,3$ Ом.

Результат первого опыта — исследование неуравновешенного тензометрического полумоста — движок потенциометра установлен в крайнем левом положении (рис. 4).

Рисунок 4. Схема в программной среде Multisim Live: движок потенциометра R3 установлен на уровне 100%; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензорезисторы R1 и R2 типа 2ФКП-1-50 выйдут из строя, поскольку через них пройдет ток (100 мА), превышающий предельно допустимый ток питания (25 мА).

Результат второго опыта — исследование неуравновешенного тензометрического полумоста — движок потенциометра установлен в крайнем правом положении (рис. 5).

Рисунок 5. Схема в программной среде Multisim Live: движок потенциометра R3 установлен на уровне 0%; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензорезисторы R1 и R2 типа 2ФКП-1-50 выйдут из строя, поскольку через них пройдет ток (100 мА), превышающий предельно допустимый ток питания (25 мА).

Результат третьего опыта — исследование неуравновешенного тензометрического полумоста — движок потенциометра установлен в крайнем левом положении и добавлено балластное сопротивление (рис. 6).

Рисунок 6. Схема в программной среде Multisim Live: добавлено балластное сопротивление R; движок потенциометра R3 установлен на уровне 100%; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензометрический полумост работоспособен.

Результат четвертого опыта — исследование неуравновешенного тензометрического полумоста — движок потенциометра установлен в крайнем правом положении и добавлено балластное сопротивление (рис. 7).

Рисунок 7. Схема в программной среде Multisim Live: добавлено балластное сопротивление R; движок потенциометра R3 установлен на уровне 0%; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензометрический полумост работоспособен.

Результат пятого опыта — исследование неуравновешенного тензометрического полумоста — уменьшено напряжение источника питания (рис. 8).

Рисунок 8. Схема в программной среде Multisim Live: ЭДС источника питания уменьшена до 1,5 В; А, А1, А2, А3, А4, А5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензорезисторы R1 и R2 типа 2ФКП-1-50 выйдут из строя, поскольку через них пройдет ток (30 мА), превышающий предельно допустимый ток питания (25 мА).

Результат шестого опыта — исследование неуравновешенного тензометрического полумоста — уменьшено напряжение источника питания и добавлено балластное сопротивление (рис. 9).

Рисунок 9. Схема в программной среде Multisim Live: ЭДС источника питания уменьшена до 1,5 В; добавлено балластное сопротивление R; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензометрический полумост работоспособен.

Результат седьмого опыта — исследование сбалансированного тензометрического полумоста — движок установлен посередине потенциометра (рис. 10).

Рисунок 10. Схема в программной среде Multisim Live: движок потенциометра R3 установлен на уровне 50%; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Вывод: тензометрический полумост работоспособен.

Результат восьмого опыта — исследование сбалансированного тензометрического полумоста — имитация аналогового сигнала рабочего тензорезистора: $R_1 = 50 \pm \Delta R_1 = 50 \pm 0,3$ Ом (рис. 11, 12).

Рисунок 11. Схема в программной среде Multisim Live: Delta_R1 — резистор, управляемый напряжением источника е; A, A1, A2, A3, A4, A5 — амперметры; V1, V2, V3, V4 — вольтметры

Рисунок 12. Показания виртуального амперметра А5

Вывод: тензометрический полумост работоспособен.

Заключение

Доклад студентов МГТУ имени Н.Э. Баумана кафедры «Оборудование и технологии прокатки» факультета «Машиностроительные технологии» на тему «Аналоговая симуляция электротензометрирования динамических нагрузок электропривода механизма передвижения тележки козлового крана», оформленный в виде мультимедийной презентации, может быть заслушан во время проведения конференции «Студенческая научная весна» на кафедре «Электротехника и промышленная электроника» факультета «Фундаментальные науки».

Список литературы:

- Иванченко Ф.К., Красношапка В.А. Динамика металлургических машин. Москва: Металлургия, 1983. – 295 с.
- 2. Макаров Р.А., Ренский А.Б., Боркунский Г.Х., Этингоф М.И. Тензометрия в машиностроении. Справочное пособие. Москва: Машиностроение, 1975. 288 с.

 Шушкевич В.А. Основы электротензометрии. – Минск: Вышэйшая школа, 1975. – 352 с.

References:

- Ivanchenko F.K., Krasnoshapka V.A. Dynamics of metallurgical machines. Moscow: Metallurgy, 1983. – 295 p.
- Makarov R.A., Rensky A.B., Borkunsky G.H., Etingof M.I. Tensometry in mechanical engineering. Reference manual. – Moscow: Mashinostroenie, 1975. – 288 p.
- Shushkevich V.A. Fundamentals of electrotensiometry. Minsk: Higher School, 1975. 352 p